A p-Multigrid Spectral Difference method for viscous compressible flow using 2D quadrilateral meshes

نویسندگان

  • Sachin Premasuthan
  • Chunlei Liang
  • Antony Jameson
چکیده

The work focuses on the development of a 2D quadrilateral element based Spectral Difference solver for viscous flow calculations, and the application of the p-multigrid method and implicit time-stepping to accelerate convergence. This paper extends the previous work by Liang et al (2009) on the p-multigrid method for 2D inviscid compressible flow, to viscous flows. The high-order spectral difference solver for unstructured quadrilateral meshes is based on the formulation of Sun et al for unstructured hexahedral elements. The p-multigrid method operates on a sequence of solution approximations of different polynomial orders ranging from one upto four. An efficient preconditioned Lower-Upper Symmetric Gauss-Seidel (LU-SGS) implicit scheme is also implemented. The spectral difference method is applied to a variety of inviscid and viscous compressible flow problems. The speed-up using the p-Multigrid and Implicit time-stepping techniques is also demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral difference method for compressible flow on unstructured grids with mixed elements

This paper presents the development of a 2D solver for inviscid and viscous compressible flows using the spectral difference (SD) method for unstructured grids with mixed elements. A mixed quadrilateral and triangular grid is first refined using one-level h-refinement to generate a quadrilateral grid while keeping the curvature of boundary edges. The SD method designed for quadrilateral meshes ...

متن کامل

A p-multigrid spectral difference method for two-dimensional unsteady incompressible Navier–Stokes equations

This paper presents the development of a 2D high-order solver with spectral difference method for unsteady incompressible Navier–Stokes equations accelerated by a p-multigrid method. This solver is designed for unstructured quadrilateral elements. Time-marching methods cannot be applied directly to incompressible flows because the governing equations are not hyperbolic. An artificial compressib...

متن کامل

An Agglomerated Multigrid Method on Unstructured Hybrid Grids for Turbulent Compressible Flow

A multigrid accelerated Navier–Stokes solver, utilizing mesh agglomeration on hybrid meshes is described. The governing equations are discretized by a finite volume approach where stabilisation and discontinuity capturing is achieved by the use of a JST flux function on each edge. The method is an attempt to reduce computational cost of viscous calculations on unstructured meshes and some examp...

متن کامل

An Artificial Compressibility Method for the Spectral Difference Solution of Unsteady Incompressible Navier-Stokes Equations on Multiple Grids

This paper presents the development of a 2D high-order solver with unstructured spectral difference method for unsteady incompressible Navier-Stokes equations. Timemarching methods cannot be applied directly to incompressible flows because the governing equations are not hyperbolic. An artificial compressibility method (ACM) is employed in order to treat the inviscid fluxes using the traditiona...

متن کامل

Computation of flows with shocks using the Spectral Difference method with artificial viscosity, I: Basic formulation and application

The present work combines the Spectral Difference method with an artificial viscosity based approach to enable high-order computation of compressible fluid flows with discontinuities. The study uses an artificial viscosity approach similar to the high-wavenumber biased artificial viscosity approach (Cook and Cabot, 2005, 2004; Kawai and Lele, 2008) [1–3], extended to an unstructured grid setup....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009